Improving the Software Development Process Using
Testability Research

Jeffrey M. Voas

Reliable Software Technologies Corp.

Penthouse Suite
1001 North Highland Blvd.
Arlington, VA 22201

Abstract

Software testabilityis the the tendency of code to re-
veal existing faults during random testing. This paper
proposes to take software testability predictions into
account throughout the development process. These
predictions can be made from formal specifications,
design documents, and the code itself. The insight
provided by software testability is valuable during de-
sign, coding, testing, and quality assurance. We fur-
ther believe that software testability analysis can play
a crucial role in quantifying the likelihood that faults
are not hiding after testing does not result in any fail-
ures for the current version.

1 Introduction

Software development processes typically focus on
avoiding errors, detecting and correcting software
faults that do occur, and predicting reliability after
development. In this paper we emphasize the third
focus, the analysis of software to determine its relia-
bility.

We contend that software testability, the tendency
of code to reveal its faults during random testing, is a
significant factor in software quality. As such, we pro-
pose to take testability into account throughout the
development process. The insight provided by soft-
ware testability 1s valuable during design, coding, test-
ing, and quality assurance.

In the first section below we give an overview of
software testability and of a model used to analyze
code for testability. In the following four sections we
describe how testability can be taken into account dur-
ing design, coding, testing, and quality assurance. The
final section summarizes and describes areas for future
research.

Keith W. Miller
Department of Computer Science
101 Jones Hall
College of William & Mary
Williamsburg, VA 23185

2 Preliminaries

Software testability analysis is a process for mea-
suring the “value” provided by a particular software
testing scheme, where the value of a scheme can be as-
sessed in different ways. For instance, software testa-
bility has sometimes been assessed via the ease with
which inputs can be selected to satisfy some struc-
tural testing criteria, e.g., branch coverage. With this
view of testability, if it turned out to be an extremely
difficult task to find inputs that satisfied a particu-
lar structural coverage criteria of a program, then the
testability of the program would be reduced. A dif-
ferent view of software testability defines it to be a
prediction of the probability that existing faults will
be revealed during testing given an arbitrary input se-
lection criteria C' [17]. Here, software testability is not
purely regarded as an assessment of the difficulty to
select inputs to cover software structure, but instead
as a way of predicting whether a program would reveal
existing faults during testing when C'is the method for
generating inputs.

To compare these two view points, we must first
understand the underlying assumption on which the
first definition operates. It implicitly assumes that
the more software structure exercised during testing,
the greater the likelihood that existing faults will be
revealed. With this definition, a straight-line program
without any conditional expressions or loops would be
assigned a higher software testability than any pro-
gram with a more complex flow of control. However
when testability is based on the probability of fault
detection, a straight-line program without any con-
ditional expressions or loops could potentially be as-
signed a lower testability than a program with more
complex flow of control. This would not occur with
the coverage-based definition. This is because there
are conditions other than coverage that can determine

whether or not software will fail during testing. The
advantage of our definition is that it incorporates other
factors than coverage that play an important role in
whether faults will hide during testing. These factors
will be described later.

In either definition, software testability analysis 1s
a function of a (program, input selection criteria) pair.
The means by which inputs are selected is a parame-
ter of the testing strategy: inputs can be selected ran-
domly, they can be based upon the structure of the
program, or they may be based on the tester’s human
intuition. Testability analysis is impacted heavily by
the choice of input selection criteria. Testability anal-
ysis 18 more than an assertion about a program, but
rather is an assertion about the ability of an input
selection criteria (in combination with the program)
to satisfy a particular testing goal. Programs may
have varying testabilities when presented with vary-
ing means of generating inputs.

From this point on, we will only discuss the latter
definition of software testability, which is based on the
probability of tests uncovering faults. Furthermore,
we will concentrate on black-box random testing as
the type of testing used to establish the testability of
a program.

In order for software to be assessed as having a
“greater” testability by this definition, 1t must be
likely that a failure occurs during testing whenever
a fault exists. To understand this likelihood, it is nec-
essary to understand the sequence of events that leads
up to a software failure. (By software failure, we mean
an incorrect output that was caused by a flaw in the
program, not an incorrect output caused by a problem
with the environment in which the program is execut-
ing.) Software failure only occurs when the following
three necessary and sufficient conditions occur in the
following sequence:

1. A input must cause a fault to be executed.

2. Once the fault is executed, the succeeding data
state must contain a data state error.

3. Once the data state error is created, the data
state error must propagate to an output state.

This model is termed the fault/failure model, and
it’s origins in the literature can be traced to [9, 12].
The fault /failure model relates program inputs, faults,
data state errors, and failures. Since faults trigger
data state errors that trigger failures, any formal testa-
bility analysis model that uses the second definition
for software testability should take into account these
three conditions. ([2] is an example of a mutation-
based testing methodology that considers the first two

conditions.) Tt is the second and third conditions that
the second definition of testability takes into account
that the first definition does not. This is the essential
difference.

A semantic-based definition of testability predicts
the probability that tests will uncover faults if any
faults exist. The software is said to have high testa-
bility for a set of tests if the tests are likely to uncover
any faults that exist; the software has low testability
for those tests if the tests are unlikely to uncover any
faults that exist. Since it is a probability, testability
is bounded in a closed interval [0,1].

In order to make a prediction about the probabil-
ity that existing faults will be revealed during testing,
formal testability analysis should be able to predict
whether a fault will be executed, whether it will infect
the succeeding data state creating a data state error,
and whether the data state error will propagate its in-
correctness into an output variable. When an existing
data state error does not propagate into any output
variable, we say that the data state error was can-
celled. When all of the data state errors that are cre-
ated during an execution are cancelled, the existence
of the fault that trigged the data state errors remains
hidden, resulting in a lower software testability. These
conditions provide a formal means for predicting the
testability of software that is tightly coupled to the
fault/failure model of computation.

PIE [17, 14, 15] is a formal model that can be
used to assess software testability that is based on the
fault/failure model. PIE is based on three subpro-
cesses, each of which is responsible for estimating one
condition of the fault/failure model: Ezecution Anal-
ysis (EA) estimates the probability that a location® is
executed according to a particular input distribution;
Infection Analysis (IA) estimates the probability that
a syntactic mutant affects a data state; and Propa-
gation Analysis (PA) estimates the probability that a
data state that has been changed affects the program
output after execution is resumed on the changed data
state.

PIE makes predictions concerning future program
behavior by estimating the effect that (1) an input dis-
tribution, (2) syntactic mutants, and (3) changed data
values in data states have on current program behav-
ior. More specifically, the technique first observes the
behavior of the program when (1) the program is exe-
cuted with a particular input distribution, (2) a loca-
tion of the program is injected with syntactic mutants,

1A location in PIF analysis is based on what Korel [6] terms
a single instruction: an assignment, input statement, output
statement, and the <condition> part of an if or while state-
ment.

and (3) a data state (that is created dynamically by a
program location for some input) has one of its data
values altered and execution is resumed. After observ-
ing the behavior of the program under these scenarios,
the technique then predicts future program behavior
if faults were to exist. These three scenarios simulate
the three necessary and sufficient conditions for soft-
ware failure to occur: (1) a fault must be executed, (2)
a data state error must be created, and (3) the data
state error must propagate to the output. Therefore
the technique 1s based firmly on the conditions neces-
sary for software failure.

The process for predicting the probability that a
location is executed follows: the program is instru-
mented to record when a particular location is ex-
ecuted via a print command that is added into the
source code and then compiled. The instrumented
program is then run some number of times with inputs
selected at random according to the input distribution
of the program. The proportion of inputs that cause
the print command to be invoked in the instrumented
program out of the total number of inputs on which
the instrumented program is executed is an estimate of
this probability. This probability estimate along with
others for the software can then be used to predict the
software’s testability.

The process for predicting the probability that a
fault in a location will affect the data state of the pro-
gram will now be provided. This process is repeated
several times for each location: a syntactic mutation
is made to the location in question. The program
with this mutated location is then run some number of
times with inputs selected at random according to the
program’s input distribution. For all the times the
mutated location is executed, we record the propor-
tion of times that the program with the mutated loca-
tion produces a different data state than the original
location; this proportion is our estimate of the proba-
bility that a fault at this location infects. For exam-
ple, suppose that a program is executed 10 times, and
during the 10 executions the original location is exe-
cuted 1000 times, and 345 data states produced by the
mutated program are different than what the original
“unmutated” location produces, then our probability
estimate is 0.345 with an associated confidence inter-
val. In general, many different syntactic mutants are
made for a single location, each yielding a probability
estimate in this manner. These probability estimates
for this location along with those for other locations in
the software can then be used to predict the software’s
testability.

The process for predicting the probability that a

data state error will cause program failure given that
a location creates a data state error follows. This pro-
cess is repeated several times (over a set of program
inputs) for each location: The program is executed
with an input selected at random from the input dis-
tribution. Program execution is halted just after exe-
cuting the location, a randomly generated data value
is injected into some variable, and program execution
is resumed. If the location 1s in a loop, we customarily
inject another randomly selected value into the same
variable on each successive iteration. Specific details
on how this process is performed are found in [14].
This process simulates the creation of a data state
error during execution. We term this process “per-
turbing” a data state, since the value of a variable at
some point during execution represents a portion of
a data state. The tool then observes any subsequent
propagation of the perturbed data state to successor
output states after execution is resumed. This pro-
cess 1s repeated a fixed number of times, with each
perturbed data state affecting the same variable at
the same point in execution. For instance, assume
that after performing this process on some variable 10
times the output is affected 3 of those times. Then
the resulting probability estimate would be 0.3 with
some confidence interval [7]. This process is performed
using different variables as the recipients of the per-
turbed data states. Probability estimates found using
the perturbed data states can be used to predict which
regions of a program are likely and which regions are
unlikely to propagate data state errors caused by gen-
uine software faults. These probability estimates for
this location along with those for other locations in
the software can then be used to predict the software’s
testability.

PISCES is a tool developed in C++ that imple-
ments the PIF technique for software written in C.
The building of PISCES has occurred in stages over
the past several years. The first commercial version
of PISCES is hoped to be completed by September
’92. This version will incorporate all the nuances of
the theoretical model. The funding available to us will
determine the scheduling of this project. The PISCES
program and design were written by Jeffery Payne of

RST Corp.

Another testability model that can sometimes be
quantified via the code or specification is termed the
domain/range ratio (DRR). This model differs from
PIF in that it is static instead of dynamic. Also, an-
other difference 1s that PIFE is a function of the proba-
bility density function over the domain of the program,
whereas the DRR metric is independent of the prob-

ability density function. The domain/range ratio of
a specification is the ratio between the cardinality of
the domain of the specification to the cardinality of
the range of the specification. We denote a DRR by
« : 3, where « is the cardinality of the domain, and /3
is the cardinality of the range. As previously stated,
this ratio will not always be visible from a specifica-
tion. (An in-depth definition of the DRR metric can
be found in [16].) After all, there are specifications
whose ranges are not known until programs are writ-
ten to implement the specifications. If a program does
not correctly implement a specification, then the pro-
gram’s DRR may not match the specification’s DRR.
This is demonstrated in [16].

DRRs roughly predict a degree of software’s testa-
bility. Generally as the DRR increases for a specifica-
tion, the potential for fewer data state errors affecting
software’s output occurring within the implementa-
tion increases. When « is greater than 3, research us-
ing PISCES has suggested that faults are more likely
to remain undetected (if any exist) during testing than
when o = 3.

3 Testability and Design

Although software testability is most obviously rel-
evant during testing, by paying attention to testability
early in the development process, the testing phase can
potentially be improved significantly. Already at the
design phase, testability can be enhanced.

During design, more general specifications are elab-
orated and decomposed. Decomposition eventually re-
sults in functional descriptions of separate code mod-
ules. As these module descriptions are defined, the
developer can adjust the decomposition to improve
the eventual testability when the modules are imple-
mented.

The key to predicting testability already at the de-
sign phase is DRR, the domain/range ratio described
above. When the inputs and outputs of a module de-
sign are specified, the designer should be able to give a
fairly accurate assessment of the DRR of that module.
A module design should already include a precise def-
inition of all the legal inputs and outputs that should
result, and these legal definitions form the basis of a
DRR estimate. However, not all legalinputs (outputs)
are possible inputs (outputs) when the module is in-
tegrated into the entire system. If the designer can
give a more precise description of the possible inputs
(outputs), these can form the basis of a better DRR
estimate.

Once a DRR is estimated for each module design,
the designer can identify modules whose high DRR in-
dicates that the module will tend to hide faults from
random testing. In most applications such modules
are inevitable: when data are distilled, a high DRR
results. However, the designer can take care to isolate
high DRR functionality in as few modules as possible,
and to make high DRR modules as simple as possi-
ble. Since random testing is an ineffective method for
assuring the quality of high DRR modules, implemen-
tors and quality assurance personnel will have to use
other methods to assess these modules. These other
methods (such as path testing strategies[18], proofs of
correctness[4], and when possible exhaustive testing)
are particularly difficult for large, complex modules.
By isolating high DRR operations in small, straight-
forward modules the designer can facilitate efficient
analysis later in the development process.

Some operations outlined with a high DRR in a
specification can be designed to have a higher DRR in
the implementation. This is accomplished by having
a module return more of its internal data state to its
users. This advice flies in the face of the common wis-
dom that a module should as much as possible hides its
internal workings from other modules[11]. We agree
that such hiding can enhance portability and reduce
interface errors; however, there is a competing inter-
est here: increasing testability. In order to increase
the testability of a module, it should reveal as much
of its internal state as is practical, since information in
these states may reveal a fault that will otherwise be
missed during testing. Therefore the designer should,
especially for modules that will otherwise have a high
DRR, try to design an interface that includes enough
state information to increase testability to an accept-
able level.

4 Testability, Coding, and Unit Test

When designs are implemented, the DRR again
provides direction for development that enhances soft-
ware testability. At the design stage, the process fo-
cuses on the DRR of modules; at the coding stage, the
focus shifts to individual code locations. Single oper-
ations can induce a high DRR; for example, a mod
b, where a >> b, is a high DRR operation. The pro-
grammer should take special care when programming
these locations. This care should include increased
attention during code inspections, small proofs of cor-
rectness for the block of code in which the locations
arise, and increased white box testing at boundaries
and special values of the operation itself. As before,

when random black-box testing is unlikely to uncover
faults, the programmer must use alternative methods
to assure quality.

Some locations with a high DRR are obvious from
the operation. However, more subtle high DRR code
can arise from the interaction of several different lo-
cations, perhaps separated by many intervening loca-
tions. Furthermore, a location or locations that would
not necessarily have a high DRR under all input distri-
butions may have a high DRR under particular input
distributions. For these reasons, visual inspections are
inadequate to identify all potential high DRR code lo-
cations during coding and unit testing. The PISCES
software tool, described above, gives automated “ad-
vice” on the testability of code locations. Given an
input distribution, PISCES runs a variety of exper-
iments that yield a testability estimate for each rel-
evant location in a module. Because PISCES testa-
bility analysis is completely automated, machine re-
sources can be used in place of human time in trying
to find locations with low testability. Because PISCES
execution times are quadratic in the number of loca-
tions, this analysis can be accomplished with much
more thoroughness at the module level than during
system test (a? + b? <= (a + b)?).

5 Testability, System Test, and Relia-
bility Assessment

During system test, the attention may shift radi-
cally from the most abstract view to an intensely con-
crete focus, depending on the outcome of system tests.
As long as system tests uncover no software faults,
the quality assurance effort concentrates on assessing
the overall quality of the delivered product. However,
when a system test does not deliver the required be-
havior, the development staff must locate and repair
the underlying fault. Testability analysis can add in-
formation that is useful both for assessing the overall
quality and for locating software bugs.

Debugging software 1s easiest when a fault causes
software to fail often during testing; each failure fur-
nishes new information about the fault. This informa-
tion (hopefully) helps locate the fault so that it can
be repaired. The most difficult faults are those that
only rarely cause the software to fail. These faults
provide very few clues as to their nature and loca-
tion. When a software system has been analyzed for
testability using PISCES, each location has a testa-
bility estimate; according to that estimate, if a fault
exists at that location, it is likely to cause a failure rate

close to that testability estimate. When the debugging
process begins to converge to a deliverable product,
it may exhibit a very low but non-zero failure rate.
When seeking the location of a fault that could cause
this “low impact,” the developer can use the PISCES
testability scores to identify likely candidates among
the code locations being tested. In several preliminary
experiments (described in [13]), testability scores were
highly correlated with faults at selected locations.

The importance of testability during reliability as-
sessment concerns the confidence of testers that they
have found all the faults that exist. In the past, quan-
tifying that confidence had to rely exclusively on ran-
dom testing. The more testing, the higher the con-
fidence that the latest version was fault-free. How-
ever, as an increasing number of tests revealed no fail-
ures, the predicted reliability goes up proportional to
1/T [8]. Especially when software requires high reli-
ability (such as flight software, medical devices, and
other life-critical applications), random testing soon
becomes intractable as the exclusive source of infor-
mation about software quality.

However, testability analysis may allow developers
to obtain much higher confidence in a program using
the same amount of testing. The argument 1s as fol-
lows: in traditional random testing, probability deter-
mines that large-impact errors are likely to be discov-
ered early in testing, and smaller and smaller impact
errors are the only type to survive undetected as the
testing continues. It is the potential “tiny” faults that
prohibit us from gaining higher confidence at a more
rapid rate as testing continues.

But testability analysis offers a new source of in-
formation about the likelihood of such tiny faults ex-
isting. If we can write programs with high testability,
then we can empirically demonstrate that tiny faults
are unlikely to exist. This quantifiable confidence can
add to our confidence that testing has uncovered all
existing faults (which are unlikely to be high-impact).
In essence, we put a “squeeze play” on errors: we de-
sign and implement code that is unlikely to hide small
faults, and then we test to gain confidence that larger
faults are unlikely to have survived testing.

This technique is still experimental; we have not yet
determined that industrial programs can be written
with sufficiently high testability to make the squeeze
play effective. However, we think that if testability is
a concern throughout the development process, highly
testable code can be produced, specifically for the pur-
pose of passing strict requirements for high reliability.
Such code would have to be designed for relatively sim-
ple functions and straightforward code. Interestingly,

(for somewhat different reasons) others have suggested
that this kind of code may be the wave of the future
for critical software [10].

5.1 Applying PIE to Probability of Fail-
ure Estimation

Both random black-box testing and PIF gather in-
formation about possible probability of failure values
for a program. However, the two techniques generate
information in distinct ways: random testing treats
the program as a single monolithic black-box but PIE
examines the source code location by location; random
testing requires an oracle to determine correctness but
PIFE requires no oracle because it does not judge cor-
rectness; random testing includes analysis of the pos-
sibility of no faults but PIF focuses on the assumption
that one fault exists. Thus, the two techniques give
independent predictions about the probability of fail-
ure.

Although the true probability of failure of a partic-
ular program (conditioned on an input distribution) is
a single fixed value, this value is unknown to us. We
therefore treat the probability of failure as a random
variable ©. We then use black-box random testing
to estimate a probability density function (pdf) for
O conditioned on an input distribution. We also esti-
mate a pdf for © using the result of PIF; this estimate
is conditioned on the same input distribution as the
testing pdf, but the pdf estimated using the results
of PIF is also conditioned on the assumption that the
program contains exactly one fault, and that this fault
is equally likely to be at any location in the program.
The assumption of this single, randomly located error
is a variation on the competent programmer hypoth-
esis [1].

Figures 1(A) and 1(B) show examples of two possi-
ble estimated © pdf’s. For each horizontal location 6,
the height of the curve indicates the estimated prob-
ability that the true probability of failure of the pro-
gram has value 6. The curve in Figure 1(A) is an ex-
ample of an estimated pdf derived from random black-
box testing; we assume that the testing has uncovered
no failures. Details about deriving an estimated pdf
for © given many random tests are given in [8].

The curve in Figure 1(B) is an example of an es-
timated pdf for © that might be derived from PIE’s
results. PIF can be used to estimate at each loca-
tion the probability of failure that would be induced
in the program by a single fault at that location. All
these estimates are gathered into a histogram, one en-
try for each location estimate. The histogram is then
smoothed and normalized to produce an estimated

pdf. This pdf is conditioned on the assumed input
distribution, on the assumption that the program con-
tains exactly one fault, and on the assumption that
each location is equally likely to contain that fault.

We have marked interval estimates for each esti-
mated pdf. If the interval marked by 6 includes 90%
of the area under the estimated pdf in Figure 1(A),
then according to random testing the actual proba-
bility of failure is somewhere to the left of # with a
confidence of 90%. Similarly, if the interval in Fig-
ure 1(B) includes 10% of the area under the estimated
pdf, then according to PIF if there exists a fault, then
it will induce a probability of failure that is somewhere
to the right of 4 with confidence of 90%.

The probability of failure of 0 is a special case that
complicates the interpretation of the pdf estimated by
the results of PIE. If there exists a fault and it induces
a near-zero probability of failure, testing is unlikely to
find that error. Locations that have PIE estimates
very close to zero are troubling in an ultra-reliable
application. However, a fault that induces a pof of
0 is not technically a fault at all — no failures will be
observed with such a fault. If there are no faults in a
program, then the true probability of failure is 0 (i.e.,
¢ = 0), and ultra-reliability has been achieved. We do
not expect this to be the case in realistic software, but
our analysis cannot rule out its possibility.

Figure 1(A) suggests that if there is a fault, it is
likely to induce a small probability of failure; Figure
1(B) suggests that such small impact faults are un-
likely. We now attempt to quantify the meaning of
the two estimated pdfs taken together.

Hamlet has derived an equation to determine what
he calls “probable correctness” [5]. When T tests have
been executed and no failures have occurred, then:

C=Prob0<y)=1-(1-7" (1)

where (' is probable correctness, 6 is the true pof, and
0<y<1.?

Hamlet’s equation is related to the pdf estimated
by testing in Figure 1(A) as follows: for any given ~,
C' = [t(6)d, where t(6) is the value of the testing
pdf at . This equation requires a large number of
tests, T', to establish a reasonably high C' for a v close
to 0.

It is possible via PIF to predict a minimum prob-
ability of failure that would be induced by a fault at
a location in the program. In Figure 1(B) we have la-
beled a particular value 7; using the pdf estimated by

2Hamlet calls C' a measure of probable correctness, but it
would be called a confidence if the equations were cast in a
traditional hypothesis test.

Figure 1: (A) The mean of the estimated pdf curve, g, is an estimate of the probability of failure. (B) ¥ is an
estimate of the minimum probability of failure using PIE’s results.

PIF’s results, we calculate oo = f} s(0)de, where s(9)

gives the value of the PIF pdf atwﬁ. « 18 the probabil-
ity according to PIFE that the true pof is greater than
¥. We will refer to a as our confidence that ¥ is the
true minimum failure rate for the program. If PIE’s
results have predicted 4 as the minimum pof and if
we have confidence « that it is the minimum, then we
can make the following conjecture:

if Prob(f <4)=1-(1—-%)T
and if ((# = 0) or (6 > 4)) with confidence «,

then with confidence o, Prob(d = 0) = 1 — (1 —4)7.

2)
This prediction of the Prob(# = 0) is higher than is
possible from 7' random black-box tests without the
results of PIE.

6 Summary and Future Research

The significance of testability is only recently be-
coming recognized in the software engineering com-
munity [3]. In this paper we have illustrated how
testability with respect to random black-box testing
has importance throughout the software development
life-cycle. Automated testability analysis, such as
PISCES, exploits relatively inexpensive CPU power
to help guide design, coding, and testing. Also, static
analysis of the DRR, gives insight early in the speci-
fication and design stages. In all these applications,
testability gives a new perspective on the relationship
between software quality and our ability to measure
that quality.

Future research will focus on expanding the capa-
bilities of the PISC'E'S tool, empirically exploring dif-
ferent syntactic and semantic mutations for testabil-
ity analysis, and comparing testability using different
testing strategies. We expect that semantic-based sta-
tistical analysis of this sort will become increasingly

important as computer power becomes increasingly af-
fordable and software quality in life-critical software
becomes an increasing concern.

Acknowledgements

This work has been funded by a National Research
Council NASA-Langley Resident Research Associate-
ship and NASA Grant NAG-1-884. Since collaborat-
ing on this paper at NASA-Langley Research Center,
Voas has accepted the position of Vice President of
Advanced Research at Reliable Software Technologies
Corporation in Arlington, VA.

References

[1] RicHARD A. DEMILLO, RICHARD J. LIPTON, AND
FrEDERICK G. SAYwarD. Hints on Test Data
Selection: Help for the Practicing Programmer.

IEEE Computer, 11(4):34-41, April 1978.

[2] RicHARD A. DEMimro anp A. J. OFFUTT.
Constraint-Based Automatic Test Data Gener-
ation. [EFEE Trans. on Software FEngineering,
17(9):900-910, September 1991.

[3] R.S. FREEDMAN. Testability of Software Compo-
nents. IEEE Transactions on Software Engineer-

ing, SE-17(6):553-564, June 1991.

[4] D. Gries. The Science of Programming. Springer-
Verlag, 1981.

[5] RicHARD G. HAMLET. Probable Correctness The-
ory. Information Processing Letters, pages 17-25,
April 1987.

[6] BopcaN KOREL. PELAS-Program Error-
Locating Assistant System. IEFEFE Transactions
on Software Engineering, SE-14(9), September
1988.

[7] AvErILL M. Law anD W. Davip KeLTON. Simu-
lation Modeling and Analysis. McGraw-Hill Book
Company, 1982.

[8] K. MILLER, L. MoRELL, R. NoonaN, S. PaARk, D.
Nicor, B. MURRILL, AND J. Voas. Estimating the
Probability of Failure When Testing Reveals No

Failures. ITEEE Trans. on Software Engineering,
18(1):33-44, January 1992.

[9] LarrRY JoE MoRELL. A Theory of Error-based
Testing. Technical Report TR-1395, University

[13]

[15]

of Maryland, Department of Computer Science,

April 1984.

J. D. Musa. Reduced Operation Software. Soft-
ware Engineering Notes, July 1991.

Davip L. ParNAsS. Designing software for ease of
extension and contraction. ITEEFE Trans. on Soft-
ware Engineering, SE-5:128-138, March 1979.

D. RicHArDsON anD M. THomas. The RE-
LAY Model of Error Detection and its Applica-
tion. Proceedings of the ACM SIGSOFT/IEEE
2nd Workshop on Software Testing, Analysis, and
Verification, July 1988. Banff, Canada.

J. Voas anp K. MiLLER. Applying A Dy-
namic Testability Technique To Debugging Cer-
tain Classes of Software Faults, Software Quality
J., To appear.

J. Voas. A Dynamic Failure Model for Perform-
wng Propagation and Infection Analysis on Com-
puter Programs. PhD thesis, College of William
and Mary in Virginia, March 1990.

J. Voas. A Dynamic Failure Model for Estimat-
ing the Impact that a Program Location has on
the Program. In Lecture Notes in Computer Sci-
ence: Proc. of the 3rd European Software Engi-
neering Conf., volume 550, pages 308-331, Milan,
Italy, October 1991. Springer-Verlag.

J. Voas. Factors That Affect Program Testa-
bilities. In Proc. of the 9th Pacific Northwest
Software Quality Conf., pages 235-247, Portland,
OR, October 1991. Pacific Northwest Software
Quality Conference, Inc., Beaverton, OR.

J. Voas. PIF: A Dynamic Failure-Based Tech-
nique. [EFEE Trans. on Software Engineering,
18(8), August 1992.

ErLaiNE J. WEYUKER. An Empirical Study of
the Complexity of Data Flow Testing. Proc. of
the Second Workshop on Software Testing, Vali-
dation, and Analysis, pages 188-195, July 1988.
Banff, Alberta.

